Difference between revisions of "User:Klaus/Nearest Geohash Calculator"
imported>Klaus (added functionality for global geohashes) |
m (fix dead link) |
||
(3 intermediate revisions by one other user not shown) | |||
Line 3: | Line 3: | ||
== Usage == | == Usage == | ||
− | This 2 scripts allow you to calculate all geohashes since | + | This 2 scripts allow you to calculate all geohashes since 1990-01-01 and their distance to given coordinates. |
+ | You can then sort them easily by distance. | ||
<pre> | <pre> | ||
Line 15: | Line 16: | ||
</pre> | </pre> | ||
− | So actually the nearest hash to 48.53,9.06 ever since 1990-01-01 was on 2000-07-01 and only ~ | + | So actually the nearest hash to 48.53,9.06 ever since 1990-01-01 was on 2000-07-01 and only ~532 metres away! |
<pre> | <pre> | ||
+ | $ ./download.sh | ||
$ ./near_geohashes.py 48.53 9.05 | grep global | sort -n | head -n5 | $ ./near_geohashes.py 48.53 9.05 | grep global | sort -n | head -n5 | ||
42.43702289083002 km near global hash, hash(2006-08-21-11333.76), coordinates: 48.506565, 9.430944 | 42.43702289083002 km near global hash, hash(2006-08-21-11333.76), coordinates: 48.506565, 9.430944 | ||
Line 26: | Line 28: | ||
</pre> | </pre> | ||
− | And the nearest global hash to 48.53,9.06 since 1990-01-01 was on | + | And the nearest global hash to 48.53,9.06 since 1990-01-01 was on 2006-08-21 and ~42km away... |
+ | |||
+ | The date 1990-01-01 is arbitrarily chosen, because Yahoo gives me only DowJones opening values back until around 1985. | ||
+ | |||
=== download.sh === | === download.sh === | ||
Line 44: | Line 49: | ||
=== near_geohashes.py === | === near_geohashes.py === | ||
+ | |||
+ | This bash script calculates all geohashes since 1990-01-01 from the downloaded data: | ||
<pre> | <pre> | ||
Line 152: | Line 159: | ||
WARNING: Be careful with this script! Although I tried to make it 30W-compliant, I cannot guarantee it will output the correct coordinates, because I didn't test it very thoroughly... | WARNING: Be careful with this script! Although I tried to make it 30W-compliant, I cannot guarantee it will output the correct coordinates, because I didn't test it very thoroughly... | ||
− | At least, it does get the same values as [ | + | At least, it does get the same values as [https://geohashing.site/geohashing/30W_Time_Zone_Rule#Testing_for_30W_compliance 30W Rule page] on the wiki: |
<pre> | <pre> | ||
$ ./near_geohashes.py 68 -30 | grep 2008-05-2.* | $ ./near_geohashes.py 68 -30 | grep 2008-05-2.* |
Latest revision as of 03:49, 9 February 2020
Usage
This 2 scripts allow you to calculate all geohashes since 1990-01-01 and their distance to given coordinates. You can then sort them easily by distance.
$ ./download.sh $ ./near_geohashes.py 48.53 9.05 | grep normal | sort -n | head -n5 0.5322372070778396 km near normal hash, hash(1997-08-08-8182.20), fractions: 0.525606, 0.052020 0.8428963498045385 km near normal hash, hash(2000-07-01-10393.09), fractions: 0.530534, 0.057562 1.118616780287884 km near normal hash, hash(1993-01-10-3269.00), fractions: 0.520030, 0.047935 1.1472513155453212 km near normal hash, hash(2012-05-08-13035.85), fractions: 0.537845, 0.056814 1.1546716239289085 km near normal hash, hash(1991-10-16-3040.25), fractions: 0.538614, 0.055956
So actually the nearest hash to 48.53,9.06 ever since 1990-01-01 was on 2000-07-01 and only ~532 metres away!
$ ./download.sh $ ./near_geohashes.py 48.53 9.05 | grep global | sort -n | head -n5 42.43702289083002 km near global hash, hash(2006-08-21-11333.76), coordinates: 48.506565, 9.430944 180.5498687319234 km near global hash, hash(1999-05-28-10701.28), coordinates: 49.296345, 7.614187 436.771324971548 km near global hash, hash(2000-08-24-11130.55), coordinates: 47.605377, 12.871693 530.3023722367725 km near global hash, hash(2004-05-13-10011.52), coordinates: 53.266972, 8.150993 557.1621456075098 km near global hash, hash(1999-06-19-10847.64), coordinates: 53.602194, 9.219057
And the nearest global hash to 48.53,9.06 since 1990-01-01 was on 2006-08-21 and ~42km away...
The date 1990-01-01 is arbitrarily chosen, because Yahoo gives me only DowJones opening values back until around 1985.
download.sh
This bash script downloads the list of DowJones values from Yahoo:
#!/bin/bash year=$(date +%Y) mon=$(date +%m) dat=$(date +%d) # download data from yahoo, then: # remove first line ("Date,Open,High,Low,Close,Volume,Adj Close") rm -f dowjones.csv wget -o /dev/null -O - "https://ichart.yahoo.com/table.csv?s=%5EDJI&a=09&b=1&c=1928&d=$mon&e=$dat&f=$year&g=d&ignore=.csv" | tail -n+2 | cut -d ',' -f 1-2 > dowjones.csv
near_geohashes.py
This bash script calculates all geohashes since 1990-01-01 from the downloaded data:
#!/usr/bin/python # vim: tabstop=8 expandtab shiftwidth=4 softtabstop=4 from math import radians, cos, sin, asin, sqrt from sys import argv, exit from datetime import datetime, date, timedelta from time import strptime from bisect import bisect_left from hashlib import md5 dj = {} # this will contain the date -> dowjones values! lat,lon = 0,0 latPrefix,lonPrefix = 0,0 # https://stackoverflow.com/questions/4913349/haversine-formula-in-python-bearing-and-distance-between-two-gps-points/4913653#4913653 def haversine(lon1, lat1, lon2, lat2): """ Calculate the great circle distance between two points on the earth (specified in decimal degrees) """ # convert decimal degrees to radians lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2]) # haversine formula dlon = lon2 - lon1 dlat = lat2 - lat1 a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2 c = 2 * asin(sqrt(a)) r = 6371 # Radius of earth in kilometers. Use 3956 for miles return c * r def loadDowJones(inputfile): global dj with open(inputfile) as f: lines = [l.strip('\n') for l in f.readlines()] for l in lines: dat, dowjones = l.split(',') # convert the date string to a "date" object dat = datetime.strptime(dat, '%Y-%m-%d').date() # round the DowJones dowjones = round(float(dowjones), 2) dj[dat] = dowjones def daterange(start_date, end_date): for n in range(int ((end_date - start_date).days)): yield start_date + timedelta(n) def nearest(fractionLat, fractionLon): minimalDistance = float("inf") # infinity is larger than everything else! # calculate the minimum distance to all of the 9 adjacent graticules geohashes for i in range(-1,2): # i is in -1 0 1 for j in range(-1,2): # j is in -1 0 1 minimalDistance = min(minimalDistance, haversine(lat, lon, latPrefix + fractionLat + i, lonPrefix + fractionLon + j)) return minimalDistance def calculateFractions(): for d in (daterange(date(1990,1,1), date.today())): significantDJdate = d # if we are east of 30W and the date is after or equal to # 2008-05-27 when the 30W rule was introduced # -> use the previous day! if lon > -30 and d >= date(2008,5,27): significantDJdate -= timedelta(days=1) # go back, until we have a DJ value! while significantDJdate not in dj: significantDJdate -= timedelta(days=1) s = "%s-%.2f" % (d, dj[significantDJdate]) md5Output = md5(s.encode('ascii')).digest() fractionA = int.from_bytes(md5Output[0:8], byteorder='big', signed=False) / (256**8) fractionB = int.from_bytes(md5Output[8:16], byteorder='big', signed=False) / (256**8) distance = nearest(fractionA, fractionB) print("%s km near normal hash, hash(%s), fractions: %f, %f" % (distance, s, fractionA, fractionB)) # now calculate the global hash # for the globalhash, we always use the previous day! significantDJdate = d - timedelta(days=1) # go back, until we have a DJ value! while significantDJdate not in dj: significantDJdate -= timedelta(days=1) s = "%s-%.2f" % (d, dj[significantDJdate]) md5Output = md5(s.encode('ascii')).digest() globalLat = int.from_bytes(md5Output[0:8], byteorder='big', signed=False) / (256**8) * 180 - 90 globalLon = int.from_bytes(md5Output[8:16], byteorder='big', signed=False) / (256**8) * 360 - 180 distance = haversine(lat, lon, globalLat, globalLon) print("%s km near global hash, hash(%s), coordinates: %f, %f" % (distance, s, globalLat, globalLon)) if __name__ == "__main__": if len(argv) != 3: print("usage: %s <lat> <lon>" % argv[0]) exit(1) # print warning... #print("WARNING: this script will work only for east-of-W30 locations like Europe!") lat, lon = float(argv[1]), float(argv[2]) latPrefix = int(lat) lonPrefix = int(lon) loadDowJones("dowjones.csv") calculateFractions()
30W compliance
WARNING: Be careful with this script! Although I tried to make it 30W-compliant, I cannot guarantee it will output the correct coordinates, because I didn't test it very thoroughly...
At least, it does get the same values as 30W Rule page on the wiki:
$ ./near_geohashes.py 68 -30 | grep 2008-05-2.* 55.255531860961014 km near, hash(2008-05-20-13026.04), fractions: 0.630991, 0.618946 23.136853502336027 km near, hash(2008-05-21-12824.94), fractions: 0.179468, 0.861536 26.670377452155773 km near, hash(2008-05-22-12597.69), fractions: 0.972874, 0.238697 49.31177452443187 km near, hash(2008-05-23-12620.90), fractions: 0.400247, 0.722772 51.7625179127548 km near, hash(2008-05-24-12620.90), fractions: 0.126648, 0.547533 21.094839705051594 km near, hash(2008-05-25-12620.90), fractions: 0.941775, 0.182874 53.79151860822181 km near, hash(2008-05-26-12620.90), fractions: 0.673128, 0.607308 23.137520322442228 km near, hash(2008-05-27-12479.63), fractions: 0.209678, 0.101442 38.27005026419556 km near, hash(2008-05-28-12542.90), fractions: 0.687451, 0.212208 44.91787517770784 km near, hash(2008-05-29-12593.87), fractions: 0.464702, 0.034124 $ ./near_geohashes.py 68 -29 | grep 2008-05-2.* 55.4838760545182 km near, hash(2008-05-20-13026.04), fractions: 0.630991, 0.618946 23.265428063696074 km near, hash(2008-05-21-12824.94), fractions: 0.179468, 0.861536 26.67292242217709 km near, hash(2008-05-22-12597.69), fractions: 0.972874, 0.238697 49.61217710794762 km near, hash(2008-05-23-12620.90), fractions: 0.400247, 0.722772 51.791303059416734 km near, hash(2008-05-24-12620.90), fractions: 0.126648, 0.547533 21.109668916397265 km near, hash(2008-05-25-12620.90), fractions: 0.941775, 0.182874 53.97565438600757 km near, hash(2008-05-26-12620.90), fractions: 0.673128, 0.607308 48.57177027251728 km near, hash(2008-05-27-12620.90), fractions: 0.125367, 0.577111 30.83845687039247 km near, hash(2008-05-28-12479.63), fractions: 0.710441, 0.112732 39.48856495153396 km near, hash(2008-05-29-12542.90), fractions: 0.278327, 0.741142